lunes, 27 de febrero de 2012

circunferencia

circunferencia
es  la distancia entre cualquiera de sus puntos y el centro se le denomina radio. El segmento de recta formado por dos radios alineados se llama diámetro. Es la mayor distancia posible entre dos puntos que pertenezcan a la circunferencia. La longitud del diámetro es el doble de la longitud del radio. La circunferencia sólo posee longitud. Se distingue del círculo en que éste es el lugar geométrico de los puntos contenidos en una circunferencia determinada; es decir, la circunferencia es el perímetro del círculo cuya superficie contiene.
Puede ser considerada como una elipse de excentricidad nula, o una elipse cuyos semiejes son iguales. También se puede describir como la sección, perpendicular al eje, de una superficie cónica o cilíndrica, o como un polígono de infinitos lados, cuya apotema coincide con su radio.
La circunferencia de centro en el origen de coordenadas y radio 1 se denomina circunferencia unidad o circunferencia goniométrica.

elementos de la circunferencia


elementos de la  circunferencia
  • Centro, el punto interior equidistante de todos los puntos de la circunferencia;
  • Radio, el segmento que une el centro con un punto cualquiera de la circunferencia;
  • Diámetro, el mayor segmento que une dos puntos de la circunferencia (necesariamente pasa por el centro);
  • Cuerda, el segmento que une dos puntos de la circunferencia; (las cuerdas de longitud máxima son los diámetros)
  • Recta secante, la que corta a la circunferencia en dos puntos;
  • Recta tangente, la que toca a la circunferencia en un sólo punto;
  • Punto de tangencia, el de contacto de la recta tangente con la circunferencia;
  • Arco, el segmento curvilíneo de puntos pertenecientes a la circunferencia;
  • Semicircunferencia, cada uno de los dos arcos delimitados por los extremos de un diámetro

CIRCUNFERENCIAS EN POSICIONES RELATIVAS

  CIRCUNFERENCIAS EN POSICIONES RELATIVAS
                                                                                                                                                              Archivo:Circunferências.png       * Exteriores, si no tienen puntos comunes y la    distancia que  hay entre sus centros es mayor que la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 1)
  • *Tangentes exteriormente, si tienen un punto común y todos los demás puntos de una son exteriores a la otra. La distancia que hay entre sus centros es igual a la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 2)
  • *Secantes, si se cortan en dos puntos distintos y la distancia entre sus centros es menor a la suma de sus radios. No importa que tengan igual o distinto radio. Dos circunferencias distintas no pueden cortarse en más de dos puntos. Dos circunferencias son secantes ortogonalmente si el ángulo entre sus tangentes en los dos puntos de contacto es recto. (Figura 3)
  • *Tangentes interiormente, si tienen un punto común y todos los demás puntos de una de ellas son interiores a la otra exclusivamente. La distancia que hay entre sus centros es igual al valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra. (Figura 4)
  • *Interiores excéntricas, si no tienen ningún punto común y la distancia entre sus centros es mayor que 0 y menor que el valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra.
  • *Interiores concéntricas, si tienen el mismo centro (la distancia entre sus centros es 0) y distinto radio. Forman una figura conocida como corona circular o anillo. Una de ellas tiene que tener mayor radio que la otra. (Figura 5)
  • *Coincidentes, si tienen el mismo centro y el mismo radio. Si dos circunferencias tienen más de dos puntos comunes, necesariamente son circunferencias coincidentes.

Ángulos en una circunferencia

Ángulos en una circunferencia
 
 
Ángulo central, si tiene su vértice en el centro de esta. Sus lados contienen a dos radios.
La amplitud de un ángulo central es igual a la del arco que abarca.
Ángulo inscrito, si su vértice es un punto de la circunferencia y sus lados contienen dos cuerdas.
La amplitud de un ángulo inscrito en una semi circunferencia equivale a la mayor parte del ángulo exterior que limita dicha base. (Véase: arco capaz.)
Ángulo semi-inscrito, si su vértice es un punto de la circunferencia y sus lados contienen una cuerda y una recta tangente a la circunferencia. El vértice es el punto de tangencia.
La amplitud de un ángulo semi-inscrito es la mitad de la del arco que abarca.
Ángulo interior, si su vértice está en el interior de la circunferencia.
La amplitud de un ángulo interior es la mitad de la suma de dos medidas: la del arco que abarcan sus lados más la del arco que abarcan sus prolongaciones.
Ángulo exterior, si tiene su vértice en el exterior de la circunferencia

elipse

<>Elipse
 la elipse es una curva simétrica cerrada que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría –con ángulo mayor que el de la generatriz respecto del eje de revolución  Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado.
Historia

Forma elíptica trazada en la antigüedad sobre un muro de Tebas (Egipto).
La elipse, como curva geométrica, fue estudiada por Menecmo, investigada por Euclides, y su nombre se atribuye a Apolonio de Perge. El foco y la directriz de la sección cónica de una elipse fueron estudiadas por Pappus. En 1602, Kepler creía que la órbita de Marte era ovalada, aunque más tarde descubrió que se trataba de una elipse con el Sol en un foco. De hecho, Kepler introdujo la palabra «focus» y publicó su descubrimiento en 1609. Halley, en 1705, demostró que el cometa que ahora lleva su nombre trazaba una órbita elíptica alrededor del Sol

elementos

Elementos de una elipse
 
La elipse y algunas de sus propiedades matemáticas.
La elipse es una curva plana y cerrada, simétrica respecto a dos ejes perpendiculares entre sí:
  • El semieje mayor (el segmento C-a de la figura), y
  • el semieje menor (el segmento C-b de la figura).
Miden la mitad del eje mayor y menor respectivamente

puntos de una elipse

puntos de una elipse
Los focos de la elipse son dos puntos equidistantes del centro, F1 y F2 en el eje mayor. La suma de las distancias desde cualquier punto P de la elipse a los dos focos es constante, e igual a la longitud del diámetro mayor, (PF1 + PF2 = 2a).
Si F1 y F2 son dos puntos de un plano, y 2a es una constante mayor que la distancia F1F2, un punto P pertenecerá a la elipse si se cumple la relación:
P F_1 + P F_2 = 2a \,
donde a \, es la medida del semieje mayor de la elipse.

 Ejes de una elipse

El eje mayor 2a, es la mayor distancia entre dos puntos adversos de la elipse. El resultado constante de la suma de las distancias de cualquier punto a los focos equivale al eje mayor. El eje menor 2b, es la menor distancia entre dos puntos adversos de la elipse. Los ejes de la elipse son perpendiculares entre si.

parábola

parábola
En matemática, la parábola (del griego παραβολή) es la sección cónica resultante de cortar un cono recto con un plano paralelo a su generatriz  Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta (eje o directriz) y un punto fijo llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza.
La parábola aparece en muchas ramas de las ciencias aplicadas, debido a que las gráficas de ecuaciones cuadráticas son parábolas. Por ejemplo, la trayectoria ideal del movimiento de los cuerpos bajo la influencia de la gravedad (ver: movimiento parabólico y trayectoria balística).

historia

historia

La tradición reza que las secciones cónicas fueron descubiertas por Menecmo en su estudio del problema de la duplicación del cubo donde demuestra la existencia de una solución mediante el corte de una parábola con una hipérbola, lo cual es confirmado posteriormente por Proclo y Eratóstenes
Sin embargo, el primero en usar el término parábola fue Apolonio de Perge en su tratado Cónicasconsiderada obra cumbre sobre el tema de las matemáticas griegas, y donde se desarrolla el estudio de las tangentes a secciones cónicas.
Si un cono es cortado por un plano a través de su eje, y también es cortado por otro plano que corte la base del cono en una línea recta perpendicular a la base del triángulo axial, y si adicionalmente el diámetro de la sección es paralelo a un lado del triángulo axial, entonces cualquier línea recta que se dibuje desde la sección de un cono a su diámetro paralelo a la sección común del plano cortante y una de las bases del cono, será igual en cuadrado al rectángulo contenido por la línea recta cortada por ella en el diámetro que inicia del vértice de la sección y por otra línea recta que está en razón a la línea recta entre el ángulo del cono y el vértice de la sección que el cuadrado en la base del triángulo axial tiene al rectángulo contenido por los dos lados restantes del triángulo. Y tal sección será llamada una parábola
Es Apolonio quien menciona que un espejo parabólico refleja de forma paralela los rayos emitidos desde su foco, propiedad usada hoy en día en las antenas satelitales. La parábola también fue estudiada por Arquímedes, nuevamente en la búsqueda de una solución para un problema famoso: la cuadratura del círculo, dando como resultado el libro Sobre la cuadratura de la parábola.

Semejanza de todas las parábolas


Semejanza de todas las parábolas

Todas las parábolas son semejantes, es únicamente la escala la que crea la apariencia de que tienen formas diferentes.
Dado que la parábola es una sección cónica, también puede describirse como la única sección cónica que tiene excentricidad e = 1. La unicidad se refiere a que todas las parábolas son semejantes, es decir, tienen la misma forma, salvo su escala.
Desafortunadamente, al estudiar analíticamente las parábolas (basándose en ecuaciones), se suele afirmar erróneamente que los parámetros de la ecuación cambian la forma de la parábola, haciéndola más ancha o estrecha. La verdad es que todas las parábolas tienen la misma forma, pero la escala (zoom) crea la ilusión de que hay parábolas de formas diferentes.
Un argumento geométrico informal es que al ser la directriz una recta infinita, al tomar cualquier punto y efectuar la construcción descrita arriba, se obtiene siempre la misma curva, salvo su escala, que depende de la distancia del punto a la directriz.

Tangentes a la parábola

Tangentes a la parábola

La tangente biseca el ángulo entre el foco, el punto de tangencia y su proyección.
Uso de las propiedades de las tangentes para construir una parábola mediante dobleces en papel.
Un resultado importante en relación a las tangentes de una parábola establece:


La tangente biseca el ángulo entre el foco, el punto de tangencia y su proyección.


En lo sucesivo, F denotará el foco de una parábola, P un punto de la misma y T su proyección sobre la directriz. Retomando la construcción dada para encontrar puntos de una parábola, sea MP la mediatriz del triángulo FPT, el cual es isósceles y por tanto biseca al ángulo FPT. Lo único que hay que verificar ahora es que MP también es la tangente en el punto P. Sea Q otro punto de la parábola y sea U su proyección en la directriz.
Puesto que FQ=QU y QU<QT, entonces FQ<QT. Dado que esto es cierto para cualquier otro punto de la parábola, se concluye que toda la parábola está de un mismo lado de MP, y como la desigualdad es estricta, no hay otro punto de la parábola que toque a la recta MP, esto quiere decir que MP es la tangente de la parábola en P.

forma de la hipérbola

Una hipérbola es el lugar geométrico de los puntos de un plano tales que el valor absoluto de la diferencia de sus 
distancias a dos puntos fijos, llamados focos, es igual a la distancia entre los vértices, la cual es una constante positiva.
curva  abierta de dos ramas obtenida al cortar un cono recto por un plano oblicuo al eje simetria con angulo menor que el de la generatriz respecto del eje de revolucion


historia

historia


Debido a la inclinación del corte, el plano de la hipérbola interseca ambas ramas del cono.
Según la tradición, las secciones cónicas fueron descubiertas por Menecmo, en su estudio del problema de la duplicación del cubo donde demuestra la existencia de una solución mediante el corte de una parábola con una hipérbola, lo cual es confirmado posteriormente por Proclo y Eratóstenes
Sin embargo, el primero en usar el término hipérbola fue Apolonio de Perge en su tratado Cónicasconsiderada obra cumbre sobre el tema de las matemáticas griegas, y donde se desarrolla el estudio de las tangentes a secciones cónicas.

ecuaciones

Ecuaciones de la hipérbola
Ecuaciones en coordenadas cartesianas: Ecuación de una hipérbola con centro en el origen de coordenadas (0, 0) \, y ecuación de la hipérbola en su forma canónica.
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
Ecuación de una hipérbola con centro en el punto (h, k) \,
\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1
Ejemplos:
a)
\frac{(x)^2}{25} - \frac{(y)^2}{9} = 1
b)
\frac{(x)^2}{9} - \frac{(y)^2}{25} = 1
Si el semieje transverso a se encuentra en el eje x, y el semieje conjugado b, en el eje y, entonces la hipérbola es horizontal; si es al revés, es vertical. La excentricidad de una hipérbola siempre es mayor que uno.

Ecuación de la hipérbola en su forma compleja
Una hipérbola en el plano complejo es el lugar geométrico formado por un conjunto de puntos z\,, en el plano Re Im\,; tales que, cualesquiera de ellos satisface la condición geométrica de que el valor absoluto de la diferencia de sus distacias |z-w_1|-|z-w_2|\,, a dos puntos fijos llamados focosw_1\, y w_2\,, es una constante positiva igual al doble de la distancia (o sea 2l\, ) que existe entre su centro y cualesquiera de sus vértices del eje focal.
La ecuación queda: |z-w_1|-|z-w_2|=2l\,
Evidentemente esta operación se lleva a cabo en el conjunto de los números complejos.

 Ecuaciones en coordenadas polares


Dos hipérbolas y sus asíntotas.
Hipérbola abierta de derecha a izquierda: Hyperbola2.png
r^2 =a\sec 2\theta \,

Hipérbola abierta de arriba a abajo:
r^2 =-a\sec 2\theta \,
Hipérbola abierta de noreste a suroeste: Giperbola-ravnoboch.png
r^2 =a\csc 2\theta \,
Hipérbola abierta de noroeste a sureste:
r^2 =-a\csc 2\theta \,

Ecuaciones paramétricas


Imagen de sección cónica.
Hipérbola abierta de derecha a izquierda:
\begin{matrix}
 x = a\sec t + h \\
 y = b\tan t + k \\
\end{matrix}
\qquad \mathrm{o} \qquad\begin{matrix}
 x = \pm a\cosh t + h \\
 y = b\sinh t + k \\
\end{matrix}
Hipérbola abierta de arriba a abajo:
\begin{matrix}
 x = a\tan t + h \\
 y = b\sec t + k \\
\end{matrix}
\qquad \mathrm{o} \qquad\begin{matrix}
 x = a\sinh t + h \\
 y = \pm b\cosh t + k \\
\end{matrix}
En todas las formulas (h,k) son las coordenadas del centro de la hipérbola, a es la longitud del semieje mayor, b es la longitud del semieje menor.